

4000116EN

Request number	Standard	Section	Chapter	Currently valid text	Change request received Date	Typ of change	Request submitted by	Request content	Status of request	Proposal of Scientific Committee
1	Gobal Biochar C-Sink	12	3	Depending on the individual systems in place, appropriate tracking of the materials to the construction site, and thus to the carbon sink site, must be developed and submitted to Carbon Standards for approval.	07/16/2025		Carbon Future, Anna Lehner	Depending on the individual systems in place, appropriate tracking of the materials to the construction site, and thus to the carbon sink site, must be developed and submitted to Carbon Standards for approval. In cases where the biochar content of construction materials amounts to 1.000w% or less based on dry mass biochar per unit of the product representing the durable matrix, these units can be considered as diffuse sinks and tracking may stop at the creation of this durable sink> please also consider extending this to the diffuse matrix definition in general & mention in the update of the GBCS Positive Matrix List	Technical Committee, 15.09.2025. As of now, diffuse biochar C-Sinks in construction materials are already handled in Chapter 12.3 of the GBCS. From 15.10.2025 onwards, tracking of biochar C-Sinks will only be required until creation of the durable sink (matrix application). Thus, geolocation of the carbon sink site will be no longer required (see CSI newsletter from 16.09.2025, https://intranet.easy-cert.com/qm/SitePages/ABG%20-%20AgroVet%20Group%20SEARCH%20CENTE R.aspx).	

4000116EN

3	Global Biochar	1			Carbuna AG,	Please add matrix "substrates for trees". This is meant for	Technical Committee,	not necessary
	C-Sink V3.1 -	·			Benedikt	substrates with a high content of mineral material with only	15.09.2025: The	to submit to
	Matrix				Zimmermann	small amounts of perishable organic material (like compost)	substrates for trees	the Scientific
	positive list					usually for urban enviroments or roadside-construction.	described here are	Committee
	for Biochar C-					Examples: Stockholm System substrate; FLL1 and FLL2	already covered by the	
	Sink v3 12					substrate for urban trees. This matrix should be compatible	Agricultural Soil and	
	_					with EBC urban unless the substrate is particularily used for	Urban Soil classes in	
						growing food (which is not done in reality as trees for	the GBCS matrix list.	
						growing foods/fruits are all planted in real soil). Since the		
						matrix usually remains in the ground or is landfilled like soil	These matrices are	
						or purely mineral substrates, it should count as permanent	already approved for	
						removal (> 1000 years) and not have any leakage counted	diffuse sinks, for	
						in. This matrix should be allowed as a diffuse sink as the	instance when biochar	
						substrates often contain small amounts of biochar on a	is incorporated into soil	
						mass/mass basis (since the mineral components are very	substrates transported	
						heavy), so even large trucks cannot carry more than 1 t of	by truck.	
						CO2-eq. Also, please rename B-10 to substrates for "non-		
						food application" to clarify what is meant in this matrix. •	This will be included in	
						Important clarification/discrimination from potting soil	an updated version of	
						substrates	the matrix list, which	
						Important clarification/discrimination from potting soil	will show that the	
						substrates	diffuse sinks in	
						Substrates for trees are different from compost and	Agricultural Soil and	
						potting soil, since they are used in large volumes and set by	Urban Soil encompass	
						heavy machinery. These substrates are largely made from	shipments of tree	
						mineral components (mostly stone) and are meant to remain	substrates.	
						in the ground for at least decades and usually stay in the		
						ground indefinitly. Unlike compost they hardly rot and are		
						used for structural reasons in construction. If they are		
						removed they are landfilled or reused, as the material is soil-		
						like and inert. As a substrate they are a stark contrast to the		
			<u> </u>	L		throw-away potting soils described in B-09 and B-10.	1	<u> </u>

4000116EN

	CI I I D: 1	_		00/00/	6 1 1	DI 15 HA 1 15H 1 HI 1 A 1 15H 1 HO 1 1 A 1	12.11.2025	
5	Global Biochar	1	1	09/09/2025	Carbuna AG		12.11.2025:	Request
	C-Sink V3.1 -				Benedikt	Asphalt". The current ruling may only be suitable for hot		forwarded to
	Matrix				Zimmermar		Request forwarded to	Scientific
	positive list					biochar mixed within the matrix is not threatened to be	Scientific Commitee to	Commitee to
	for Biochar C-					burned during recycling and thus should be counted as a	assess integration into	assess
	Sink v3_12					permanent (1000 year) carbon sink, like concrete.	the standard	integration into
								the standard
						Cold Mix Asphalt (CMA) is not heated up at all (whereas hot		
						asphalt is heated during recycling and road construction		
						itself). CMA relys on evaporation and/or chemical setting of		
						binders. Since the product is not heated up, the biochar		
						cannot catch fire and remains chemically stable set in a		
						matrix. As the binders in CMA are a fire hazard in hot asphalt		
						recycling plants it is strictly separated from hot asphalt. 1)		
						The type of asphalt that is used on a construction site is		
						usually documented on GIS/RIS or in construction		
						documentation 2) In road construction rules (like TL Asphalt-		
						StB in Germany) it is mandatory to do a quality analysis of		
						recovered (to be recylced) asphalt to make sure that only		
						suitable material is mixed in for saftey reasons and quality		
						assurance. Modern CMA is expected to be easily recycled at		
						· · · · · · · · · · · · · · · · · · ·		
						recycling rates close to 100% and CMA needs less energy to		
						produce, as it does not have to be heated up.		